Macrophage IKKα Deficiency Suppresses Akt Phosphorylation, Reduces Cell Survival, and Decreases Early Atherosclerosis.

نویسندگان

  • Vladimir R Babaev
  • Lei Ding
  • Youmin Zhang
  • James M May
  • P Charles Lin
  • Sergio Fazio
  • MacRae F Linton
چکیده

OBJECTIVE The IκB kinase (IKK) is an enzyme complex that initiates the nuclear factor κB transcription factor cascade, which is important in regulating multiple cellular responses. IKKα is directly associated with 2 major prosurvival pathways, PI3K/Akt and nuclear factor κB, but its role in cell survival is not clear. Macrophages play critical roles in the pathogenesis of atherosclerosis, yet the impact of IKKα signaling on macrophage survival and atherogenesis remains unclear. APPROACH AND RESULTS Here, we demonstrate that genetic IKKα deficiency, as well as pharmacological inhibition of IKK, in mouse macrophages significantly reduces Akt S(473) phosphorylation, which is accompanied by suppression of mTOR complex 2 signaling. Moreover, IKKα null macrophages treated with lipotoxic palmitic acid exhibited early exhaustion of Akt signaling compared with wild-type cells. This was accompanied by a dramatic decrease in the resistance of IKKα(-/-) monocytes and macrophages to different proapoptotic stimuli compared with wild-type cells. In vivo, IKKα deficiency increased macrophage apoptosis in atherosclerotic lesions and decreased early atherosclerosis in both female and male low-density lipoprotein receptor (LDLR)(-/-) mice reconstituted with IKKα(-/-) hematopoietic cells and fed with the Western diet for 8 weeks compared with control LDLR(-/-) mice transplanted with wild-type cells. CONCLUSIONS Hematopoietic IKKα deficiency in mouse suppresses Akt signaling, compromising monocyte/macrophage survival and this decreases early atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis

Transformation of macrophages to foam cells contributes to atherosclerosis. Here, we report that let-7g reduces macrophage transformation and alleviates foam cell apoptosis by suppressing both canonical and non-canonical NF-κB pathways. In the canonical pathway, let-7g inhibits phosphorylation of IKKβ and IκB, down-regulates SREBF2 and miR-33a, and up-regulates ABCA1. In the non-canonical pathw...

متن کامل

PI3K/Akt promotes feedforward mTORC2 activation through IKKα

The ser-thr Akt plays a critical role in the regulation of cell survival, cell growth and proliferation, as well as energy metabolism and is dysregulated in many cancers. The regulation of Akt activity depends on the phosphorylation at two sites: (i) Thr308 in the activation loop by phosphoinositide-dependent kinase-1 (PDK1) and (ii) Ser473 hydrophobic motif at the carboxyl terminus by a second...

متن کامل

Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice.

Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we genera...

متن کامل

LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis.

RATIONALE Human genome-wide association studies have revealed novel genetic loci that are associated with coronary heart disease. One such locus resides in LNK/SH2B3, which in mice is expressed in hematopoietic cells and suppresses thrombopoietin signaling via its receptor myeloproliferative leukemia virus oncogene. However, the mechanisms underlying the association of LNK single-nucleotide pol...

متن کامل

Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice

Background Rictor is an essential component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2), a conserved serine/threonine kinase that may play a role in cell proliferation, survival and innate or adaptive immune responses. Genetic loss of Rictor inactivates mTORC2, which directly activates Akt S473 phosphorylation and promotes pro-survival cell signaling and proliferation. Methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2016